

The Direct Strength Method

In Cold-Formed Steel Design

Brooks H. Smith, CPEng, P.E. brooks.smith@clearcalcs.com

About ClearCalcs.com

ClearCalcs helps engineers design without compromise by bringing together powerful FEA analysis with easy to use design tools for concrete, steel, cold-formed steel and timber.

Explore our range at clearcalcs.com

[Intro Video](https://vimeo.com/287419459) [Hyperlink](https://vimeo.com/287419459)

More Accurate

Design more accurately with unrestricted and accessible FEA analysis

Eliminates Wasted Time Eliminate time wasted using clunky methods or waiting for software licenses to free up

Available Everywhere Empower engineers to work effectively from office, home, or site

Meet the Presenter

- **• Brooks H. Smith | Head of Engineering R&D**
	- Chartered Professional Engineer (AU) & P.E. (USA)
		- MCivE from University of Massachusetts
		- BEng from Dartmouth College
	- 8 years of previous experience in:
		- Structural engineering R&D consulting, specialising in cold-formed steel
		- Research fellowship in system behaviour of thin-walled steel
		- Forensic structural engineering, specialising in reinforced and PT concrete
	- Almost 5 years now with ClearCalcs
		- Focusing on R&D and QA

ClearCalcs

How to Ask Questions

Meeting Chat

•Type your questions in the Chat tab on your Zoom control panel and click Send

- Please send your questions to everyone
- •We will address all questions in the second half of the webinar during the 15-minute Q&A session
- •We might invite you to unmute yourself to ask your question live!

Agenda – Today's Goals

•Theory on the Direct Strength Method

- DSM vs Effective Width Method
- Finite Strip Method

•Practically Using DSM

- Keeping Finite Strip Method Simple
- Using DSM in AS/NZS 4600:2018

•Demonstration in ClearCalcs

- Just the Design
- Doing a Finite Strip Method Analysis

Theory on the Direct Strength Method

Comparing with the Effective Width Method, and doing a finite strip analysis

Buckling in Cold-Formed Steel

- •Hot-rolled steel classifies sections as compact, non-compact, or slender – and requires extra equations for "slender"
	- In cold-formed steel, "slender" checks basically always need to be done
- Local, distortional, or global buckling for bending or compression • Global encompasses both lateral and torsional buckling
- Stiffeners function to mitigate buckling

Old Method - Effective Width

- At its most basic, accounts for buckling by pretending that each 'plate' within an element is shorter than it really is
	- More susceptibility to buckling = shorter 'effective width'
- Separate equations for local vs distortional vs global buckling

New Method - Direct Strength

- Directly consider the strength and stiffness of the cross-section *as a whole*
- Consider every half-wavelength for buckling susceptibility
- Every type of buckling in one unified method

EWM vs DSM: Why Switch?

- More flexible: EWM is a PIA for complex sections/many plates
	- But every section is exactly as much work for you in DSM!
- More accurate: DSM is will give you up to ~10% more capacity
- Easier calculations: Maths mostly done by finite strip analysis

Interjection: Buckling Modes

- **• Local Buckling:** corners of the cross-section stay still, while the flat plates bend
	- Usually occurs at a half-wavelength of about 100-250 mm
- **• Distortional Buckling:** corners of the cross-section move, but not all corners move together
	- Usually occurs at a half-wavelength of about 400-800 mm
- **• Global Buckling:** whole cross-section rotates or translates as a single unit
	- Usually occurs at a half-wavelength greater than ~1.5 m

What is the Finite Strip Method?

- •The Direct Strength Method requires a rational analysis that usually takes the form of the Finite Strip Method
	- Instead of finite elements of little triangles or rectangles, we have entire *strips* of arbitrary length

120

• All buckling modes

@ ClearCalcs

760.5.44.

 $10³$

lenath

Finite Strip Software

- A couple main pieces of software available:
	- **• [CUFSM](https://www.ce.jhu.edu/cufsm/)** (free), from Johns Hopkins University
		- **• [pyCUFSM](https://github.com/ClearCalcs/pyCUFSM)** (free), ported to Python by Brooks Smith
	- **• [THIN-WALL](https://structuresgroup-eng.sydney.edu.au/thin-wall/)** (paid), from the University of Sydney

Centre for Advanced Structural Engineering THIN-WALL

Applied stress on the section indicates that a moment about the major

axis is applied to this section. All results are given in reference to this

Finite Strip - Signature Curves

- Commentary to the US's [AISI S100](https://www.cfsei.org/free-aisi-standards) [standard](https://www.cfsei.org/free-aisi-standards) is very helpful (and free!)
	- AS/NZS 4600's DSM section is almost verbatim copied from AISI S100
	- It's just in Imperial instead of Metric units!

applied stress distribution. Any axial stresses (due to bending, axial load, **Finite Strip Analysis Results** warping torsional stresses, or any combination thereof) may be considered in the analysis. Mode shapes are shown at C-section (AISI 2002 Ex. I-8) Minima indicate the the identified minima and at 200 in. Identification of the lowest load level at M. = 126.55klp-ln. mode shapes is critical to which a particular DSM, as each shape uses a mode of buckling different strength curve to occurs. The lowest connect the elastic buckling M../M., is sought for Ш results shown here to the each type of buckactual ultimate strength. In ling. An identified the section, local buckling cross-section mode Lateral-torsional only involves rotation at shape can repeat Distortional M_{a/My}=0.85 internal folds, distortional along the physical Local M_{a/}M_y=0.67 buckling involves both length of the 0.5 rotation and translation of member. internal fold lines, and lateral-torsional buckling involves "rigid-body" deformation of the crosssection without distortion. $\frac{9}{10^9}$ $10¹$ $10²$ half-wavelength (in.) half-wavelength Half-wavelength ▶ 清 mmmmmmmm shows how a given 5 in. Local cross-section mode 25 in. Distortional shape (as shown in the figure) varies 200 in. Lateral-torsional along its length. variation along the member length **Figure 2 Understanding Finite Strip Analysis Results**

Understanding

Finite Strip - Mode Classification

- Signature curves are not always as clear as previous example
- "Constrained Finite Strip Method" (cFSM); two methods:
	- 1. Classifying a signature curve, or
	- 2. Multiple FSM analyses, with 'constrained' modes

Practically Using DSM

Finite Strip Analysis in real life, and how it fits with AS/NZS 4600:2018

Direct Strength Method Req'ts (Cl 7[.1.2\)](https://clearcalcs.com/)

- •DSM is applicable to *most* sections you may encounter
	- But should still check this:

TABLE 7.1

LIMITS OF APPLICABILITY FOR DESIGN USING THE DIRECT STRENGTH METHOD

Local & Distortional Buckling

- Just a couple simple equations for determining if that buckling mode will occur, and then calculating the actual buckled capacity
	- Similar equations for bending moment or axial compression

ClearCalcs (ൽ)

Global Buckling

- Critical buckling factor can be from Finite Strip Method results
- But, for standard sections, analytical formulae can be easier
	- Just need formulae for $f_{oy}^{}, f_{oz}^{}$, and (for axial) $f_{oyz}^{}$

 $M_{\rm o} = C_{\rm b} A_{\rm g} r_{\rm ol} \sqrt{f_{\rm oy} f_{\rm ox}}$

 \ldots D2.1.1(1)

• Then similar equations as local and distortional buckling

Inelastic Reserve Capacity

- Allows small amounts of localised yielding that don't affect stability
	- Optional; certain connections (like welds) may forbid it
	- Only allowed if critical global buckling >> yield strength
- Weighted average of *M y* and *M*

Final Capacity

- Just simply the minimum of local, distortional, and global buckling capacities
	- *• ϕ^b* = 0.9 in bending, or 0.85 in compression

$$
\phi_b M_b = 0.9 * min(M_{bl}, M_{bd}, M_{be})
$$

$$
\phi_c N_c = 0.85 * min(N_{cl}, N_{cd}, N_{ce})
$$

Load Interactions

- **• Bending + Shear:** some equations for shear differ slightly
	- We need compatible capacities so that we can combine them

$$
\left(\frac{M^*}{\phi_{\rm b} M_{\rm s}}\right)^2\ +\ \left(\frac{V^*}{\phi_{\rm v} V_{\rm v}}\right)^2\ \leq\ 1.0\tag{7.2.3(9)}
$$

- Note that M_s is a slightly different value it's M_{bl} but without consideration of global buckling
	- i.e. $\lambda_{\parallel} = \sqrt{M_{\parallel}}/M_{\parallel o\parallel}$ instead of $\lambda_{\parallel} = \sqrt{M_{\parallel} / M_{\parallel o\parallel}}$
- **• Bending + Axial:** first, separately calculate pure bending and pure axial capacities using the Direct Strength Method

$$
\frac{N^*}{\phi_{\rm c} N_{\rm c}} \,+\, \frac{M_{\rm x}^*}{\phi_{\rm b} M_{\rm bx}} \,+\, \frac{M_{\rm y}^*}{\phi_{\rm b} M_{\rm by}} \,\leq\, 1.0 \qquad \qquad \qquad 7.2.4
$$

Deflections

- Also more accurate using our DSM results
	- Conservatively, can use *Ieff* values given by manufacturers
	- But more accurate is to use our DSM moment capacities
		- *• M* is the maximum service moment demand
		- $M_n = M_b$, except that we replace all instances of M_γ with M

$$
I_{\rm eff}=I_{\rm g}\bigg(\frac{M_{\rm n}}{M}\bigg)\leq I_{\rm g}
$$

Demonstration in ClearCalcs

How does the workflow look like in ClearCalcs

Questions?

THANK YOU!

- We will send you a recording of the webinar by email.
- There will be a survey at the end of this webinar, we would appreciate your feedback on how we can improve.
- If you have further questions, send an email to help@clearcalcs.com or use the Help button in ClearCalcs
- Stay tuned for webinar [Webinar Title] next month!

Appendix

About ClearCalcs

Happy Engineers Using ClearCalcs

ClearCalcs has been used in 2,000,000+ designs by a growing number of engineers across the globe, with the US becoming our largest customer base in 2021.

"You are light years ahead of the competition on features and ongoing growth."

"Why didn't you just use ClearCalcs for that?"

"The program basically does the work for you...Wow, I can finally throw away the last of my spreadsheets!"

Don C. Foundation Engineering Specialists, LLC

Helen W. via Landon R. Criterium Engineers

Jason M. J. Michael Engineering, PLLC

The ClearCalcs Team

A growing team of passionate engineers, programmers, customer success specialists, product managers, marketers, and more!

What Sets Our Calculations Apart

• Live solutions

• Instantly see how every change you make affects the design, in all load cases

• Finite Element Analysis

• Get the most accurate results no matter what your configuration

• As simple or complex as you want

• Safely enter in only a few properties, or tune every parameter – it's up to you

ClearCalcs What Sets Our Design Process Apar[t](https://clearcalcs.com/)

•Member selector

- *• Check every possible member in seconds*
- **• Link your loads**
	- *• No need to manually copy reactions into the next sheet – just create a link*

• Simple traffic light indicators

• See at a glance how close your design is to perfection

What Sets Our Platform Apart

•Clean, clear printouts

• Beautiful results your clients can understa.

• See full detail for every field

• References, equations, and more

•Rapid product updates

• Receive new features and calculations within days, not years

Weak Axis Buckling Torsional Ruckling

Flexural-Torsional Fa

Description Buckling stress fo References AS4600-2005, Egn Conditions $(detault) \rightarrow -$

ClearCalcs

Key Advantages

ClearCalcs is designed for the modern efficiency focused engineering practice

shared inside ClearCalcs so you can easily collaborate on projects.

professional, easy to understand calculations and quick export to PDF.

Never lose work again.

ClearCalcs was built in the cloud. That means we automatically save your work as you type and keep it securely backed up on our servers.

Save time.

Our wide range of templates and easy linking, duplication, and export are all designed to help automate creation of repetitive calculations.

Always have access.

Shared licenses and lock-outs are a thing of the past! Our simple pricing model makes it easy to give everyone access to ClearCalcs when they need it.

Mobile. Tablet. Desktop.

ClearCalcs was designed to work on any modern device. Nothing to download or install, all you need is a web browser.

of our users had them as soon as they were released,

and we didn't charge them a cent extra.