

Engineered Wood Products

Specifications and Applications

Tom RickerbyTom.rickerby@wesbeam.com

Agenda – Today's Goals

Engineered Wood Products (EWP)

- Types of EWP's in the Australian Market
- Why EWP's differ to traditional sawn timber

The Importance of Correct Specification

- Responsibility of the Structural Engineer
- Where different EWP's may be specified
- CORRECT specification of Laminated Veneer Lumber (LVL)

ClearCalc Example

Where to find timber design/products

Meet the Presenter

Tom Rickerby - Technical Manager at Wesbeam

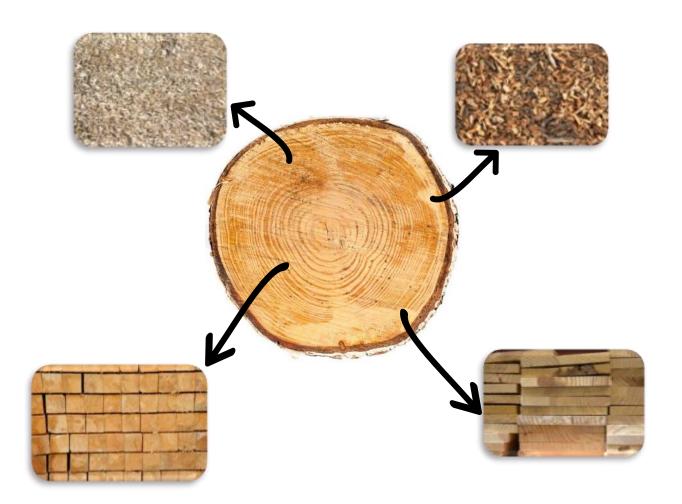
- Chartered Professional Engineer (Structural)
- Bachelor of Engineering (Civil & Construction) Hons
- Graduate Certificate (Timber)
- Graduate Certificate (Management)

- 8 years in manufacturing and design of LVL
- Director on the Board of the EWPAA
- Various timber industry committees and panels

Meet the Presenter

About wesbeam

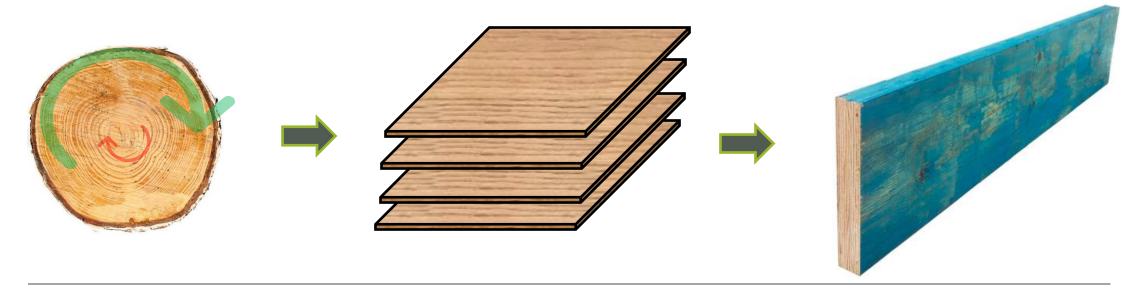
- Australia's only large manufacturer of Laminated Veneer Lumber (LVL) and LVL I-joists
- 24/7 operation north of Perth WA, producing LVL since 2004
- 250+ staff including Structural Design and Engineering team of 25 across Australia
- Full control of wood sourcing, to manufacturing, design, and supply


Engineered Wood Products

An overview for the Australian Market

Australia's focus on Timber

What are EWP's

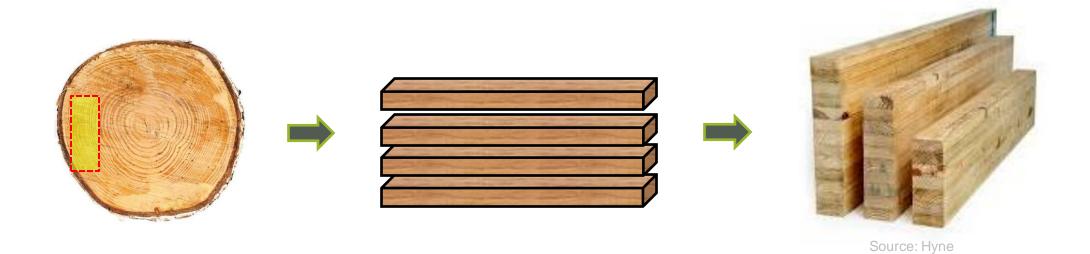


LAMINATED VENEER LUMBER (LVL)

Did you know?

LVL uses the veneers peeled from the outside of the tree, which are typically denser and stronger than the inner core material.

Common sizes: Width: 35mm – 75mm Depth: 70mm – 450mm (600mm - 1200mm as special order)

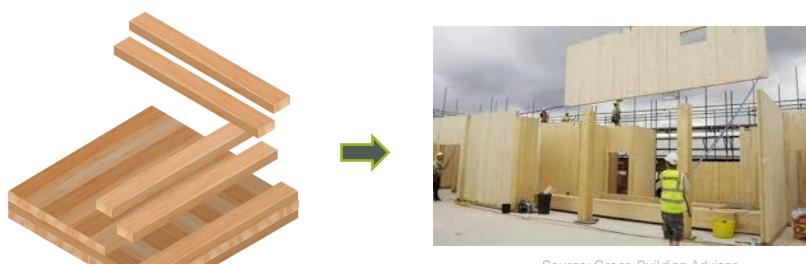


GLUED LAMINATED TIMBER (GLT)

Did you know?

Glulam beams are typically manufactured with a camber (GLC) or can be requested as a straight (GLS)

Common sizes: Width: 65mm – 85mm Depth: 120mm – 625mm (larger/curved as special order)


CROSS LAMINATED TIMBER (CLT)

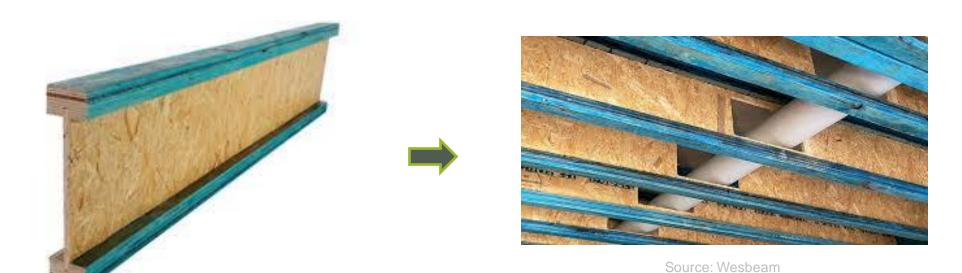
Did you know?

CLT buildings offer a sustainable, visually appealing alternative to traditional concrete, pre-cast panel construction. CLT buildings can be designed to resist fire for 120 minutes

Common sizes: Thickness: 60mm – 200mm Panel sizes: 3m x 16m

Source: Think Wood

Source: Green Building Advisor



I-JOISTS

Did you know?

I-joists have a similar span range to solid LVL joists, but with significantly less weight.
I-joists can have large penetrations cut in the web to run plumbing and other services, without compromising the structural integrity

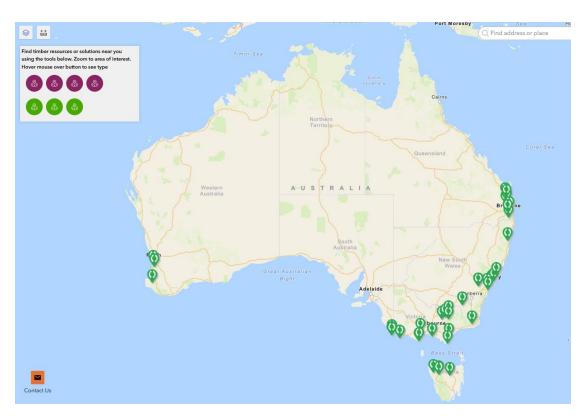
Common sizes: Depth: 200mm - 400mm Width: 40mm x 90mm

PANEL PRODUCTS

Did you know?

Plywood, OSB, and particleboard can all be used for floor sheeting, wall bracing, and cladding in residential and commercial applications. In Australia, particleboard is most commonly used for floor sheeting, while OSB and plywood are typically used for bracing panels and cladding.

Particleboard


Oriented strandboard

Plywood

MANUFACTURING IN AUSTRALIA

LVL

I-Joists

Glulam

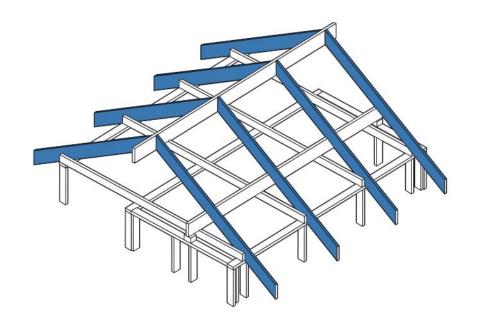
Plywood

Particleboard

Source: National Centre for Timber Durability and Design Life

Specification of EWP's

Focus on the importance of LVL specification



Where to use what?!

	Floor/wall Slabs	Floor Joists	Floor/Roof Beams	Wall studs	Rafters	Lintels
Sawn Pine (MGP)		√	✓	√	✓	√
CLT	✓					
GLT			✓	√*		
LVL		✓	✓	✓	✓	✓
I-joists		√			✓	

What Information Engineers Give?

190 x 35 MGP10 @ 600c/c 190 x 35 MGP10 H2F @ 600c/c Timber Depth

Timber Width

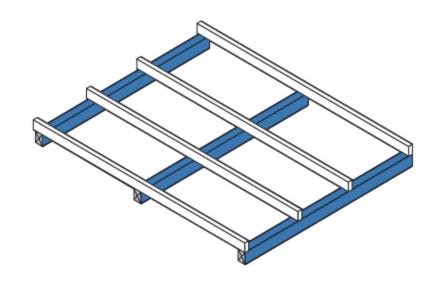
Timber Grade

Rafter Spacing

Timber Treatment Level? Maybe...

TABLE H3.1
CHARACTERISTIC VALUES FOR DESIGN—MGP10, MGP12, MGP15 & A17 STRESS GRADES

				Characteristic values, MPa										
Stress	Sectio	Section size		Tension	Compression	Shoor	Average modulus	Average	Bearing		Shear	Tension	Design	Joint
grade	Depth	Breadth		parallel to grain	parallel to grain	in beams	of elasticity (see Note1)		Perpendicular to grain	Parallel to grain	at joint details	perpendicul ar to grain	density	group
	mm	mm	(f_b')	(f'_t)	(f'c)	(f'_s)	(<i>E</i>)	(<i>G</i>)	$(f_{\mathbf{p}}')$	(f'_ℓ)	(f'_{sj})	(f'_{tp})	(kg/m ³)	
	70 to 140	35	17	7.7	18	2.6	10 000	670			4.2	0.5	500	
MGP 10	190	and	16	7.1	18	2.5			10	30				JD5 (see Note 2)
MGP 10	240	45	15	6.6	17	2.4								
	290	45	14	6.1	16	2.3								
	70 to 140	35	28	12	24	3.5	12 700	850	10	30	4.2	0.5	540	JD4
MGP 12	190	and	25	12	23	3.3								
MGF 12	240	45	24	11	22	3.2								
	290	43	22	9.9	22	3.1								
	70 to 140	35	39	18	30	4.3		1 010	10 3			0.5	570	JD4
MGP 15	190	and	36	17	29	4.1	15 200			30	4.2			
MGF 13	240	45	33	16	28	4.0	13 200	1 010		30 4.2	4.2			
	290		31	14	27	3.8								
	70 to 120	35	45	26	40	5.1					6.0			JD3
	70 10 120	45	40	24	35	4.5								
A17	140, 190		45	24	35	4.5	16 000	930	17	50		0.6	650	
Al7	140, 190	45	40	21	32	4.0		930	17	50	0.0	0.0	030	נענ
	240, 290	35	40	18	27	3.6								
	240, 290	45	40	17	25	3.3								


What is available?

NOTES:

- 1 The average modulus of elasticity includes an allowance for shear deformation and is for short duration loading.
- 2 For MGP 10 grade, JD4 may be used where heart-in material is excluded.
- 3 The modulus of rigidity (estimated as one-fifteenth of the average modulus of elasticity) is included for the estimation of torsional rigidity.
- 4 Interpolation may be used to obtain properties for depths not listed.

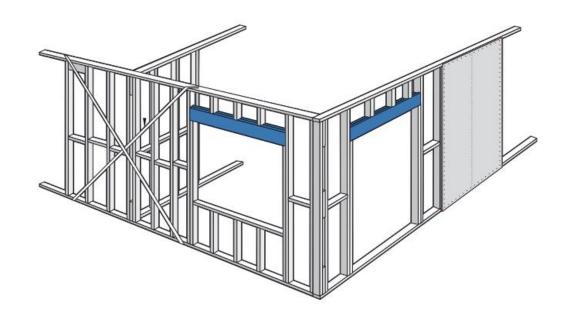
The same level of info for EWP?

EWP Section Size

EWP Grade

Timber Treatment Level? Maybe...

TABLE 7.1
CHARACTERISTIC VALUES FOR STRUCTURAL DESIGN—GL-GRADES


	Characteristic values, MPa							
Stress grade	Bending Tension		Shear in beam (f'_s)	n beam parallel to modulus of elasticity		Short duration average modulus of rigidity for beams (G)		
GL18	45	25	5.0	45	18500	1230		
GL17	40	20	4.2	33	16700	1110		
GL13	33	16	4.2	26	13300	900		
GL12	25	11	4.2	22	11500	770		
GL10	22	8	3.7	18	10000	670		
GL8	19	6	3.7	14	8000	530		

What is available?

NOTE: The characteristic values for tension for GL grades apply for tension members with the larger cross-sectional dimension not greater than 150 mm. For tension members with a cross-sectional dimension greater than 150 mm, the characteristic values are determined by multiplying the value in the table by $(150/d)^{0.167}$, where d is the larger cross-sectional dimension of the section.

What about LVL?

EWP Section Size

EWP Grade

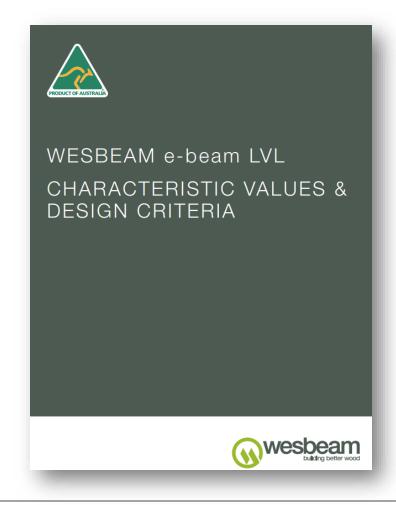
Timber Treatment Level? Maybe...

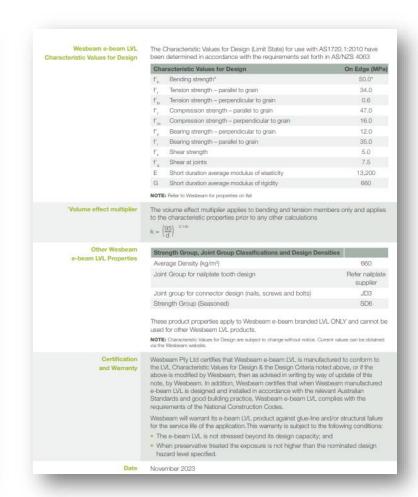
300 x 63 LVL 13 UNLESS YOU <u>DEFINE</u> WHAT AN LVL13 IS!

8.3 DESIGN PROPERTIES

8.3.1 Characteristic values for strength properties and elastic moduli

Characteristic values for structural LVL shall be obtained from the manufacturer. Characteristic values for LVL shall include consideration of the section sizes to which they are intended to apply.




"LVL13" or "LVL13.2" available in the market includes:

- Wesbeam e-beam (flagship product for Wesbeam with an "E13.2")
- Meyer, ITI, Tillings, Dindas, etc...
- Each manufacturer/importer have different product ranges
- Each of these products have different values for:
 - Modulus of Elasticity ("E value")
 - bending strength
 - shear strength
 - compression/tension strength etc.
- In design, you much check all structural properties, not just the E value.

If you specify LVL13, what properties are you using to check you bending and shear strength?

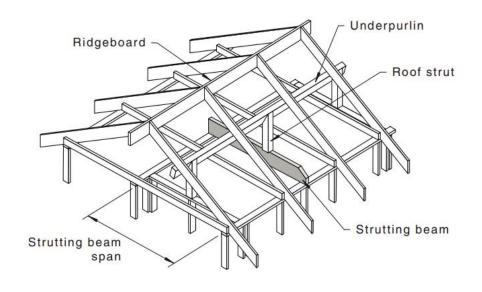
How to specify generic LVL

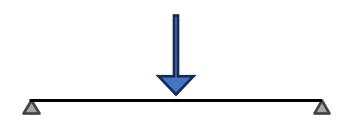
- 1. You could specify a brand and product
- 2. You could specify options

3. You could specify minimum properties

e.g. 240 x 63 Wesbeam e-beam LVL

e.g. 240 x 63 LVL. Refer to table for options


	Stiffness Properties		Characteristic Strength Properties					
	Average Modulus of	Bending strength,	Shear Strength,	Bearing perp. to	Compression			
	Elasticity, E (MPa)	f' _b (MPa)*	f' _v (MPa)	grain, f'p (MPa)	Strength, f'c (MPa)	Joint Group		
Wesbeam e-beam	13,200	50.0	5.0	12.0	47.0	JD3		
	13,200	50.0	5.0	10.0	43.0	JD4		
	13,200	48.0	4.5	10.0	30.0	JD4		
	13,200	50.0	4.6	12.0	38.0	JD4		
	13,200	44.0	4.1	6.0	35.0	JD4		


e.g. 240 x 63 LVL. Refer to table for minimum structural properties

LVL Specifiation - Minimum Structural Pr	operties
Average Modulus of Elasticity, E (MPa)	13,200
Bending strength, f' _b (MPa)*	48.0
Shear Strength, f', (MPa)	4.5
Bearing perp. to grain, f'p (MPa)	10.0
Compression Strength, f'c (MPa)	30.0
Joint Group	JD4

What are the risks if specific incorrectly?

What are the risks if specific incorrectly?

Engineering Specification – Option 1

240 x 45 LVL (refer to LVL table)

LVL Specifiation - Minimum Structural Properties							
Average Modulus of Elasticity, E (MPa)	13,200						
Bending strength, f' _b (MPa)*	48.0						
Shear Strength, f'v (MPa)	4.5						
Bearing perp. to grain, f'p (MPa)	10.0						
Compression Strength, f'c (MPa)	30.0						
Joint Group	JD4						

Engineering Specification – Option 2

240 x 45 E13 LVL

What are the risks if specific incorrectly?

LVL Specifiation - Minimum Structural Pro	perties
Average Modulus of Elasticity, E (MPa)	13,200
Bending strength, f' _b (MPa)*	48.0
Shear Strength, f', (MPa)	4.5
Bearing perp. to grain, f'p (MPa)	10.0
Compression Strength, f'c (MPa)	30.0
Joint Group	JD4

	Calculation	Member		Quantity
99%	B2	240 × 45 - e-beam (Wesbeam®)		$2500~\mathrm{mm}$
Summar	у			
99%	Moment Capaci	ty	$M_d = 1$	$2.2 \mathrm{kN \cdot m}$
28%	Shear Capacity	Shear Capacity		$4.3 \mathrm{kN}$
	Bearing Capacit	у	$N_{d,gov} = 4$	$3.7 \mathrm{kN}$
43%	Governing Shor	t-Term Deflection	$\delta_s = -$	-4.31 mm
31%	Governing Long	-Term Deflection	$\delta_l = -$	$-3.15~\mathrm{mm}$
0%	Governing Impo Deflection	osed Load	$\delta_Q = 0$	mm

Quantity

What are the risks if specific incorrectly?

Calculation

Engineering Specification – Option 1

240 x 45 E13 LVL

107% B2		240 × 45 - E13 LVL			2500 mm			
Summary								
107%	Moment Capaci	ty	$M_d =$	11.3 kN	$\mathbf{V} \cdot \mathbf{m}$			
33%	Shear Capacity		$V_d =$	$29.8 \mathrm{kN}$	1			
	Bearing Capacit	у	$N_{d,gov} =$	$43.7 \mathrm{kN}$	1			
43%	Governing Shor	t-Term Deflection	$\delta_s =$	-4.31	mm			
31%	Governing Long	-Term Deflection	$\delta_l =$	-3.15	mm			
0%	Governing Impo	osed Load	$\delta_Q =$	$0 \ \mathrm{mm}$				

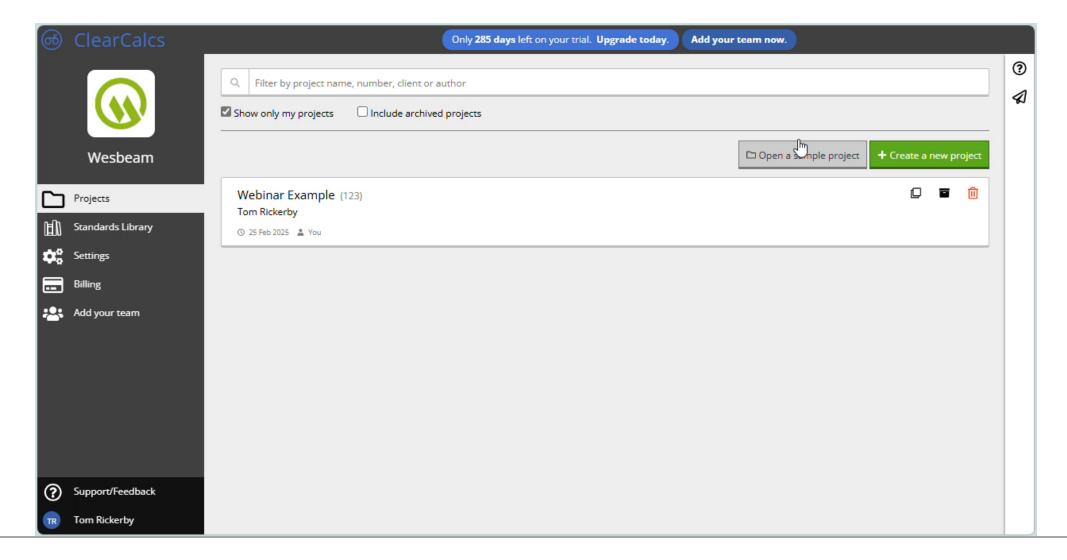
Member

Key Reminder for Engineers

you can be **flexible**, but you can't be **vague**

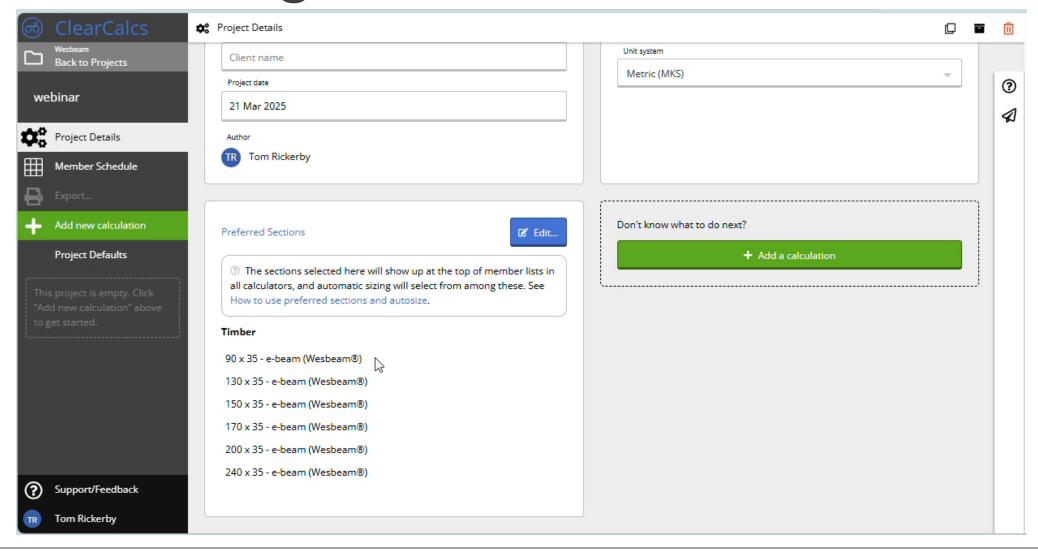
specifying **products** that are widely **available** will assist the project

if you are unsure, ask!



ClearCalcs

Timber Design



Specification in Clear Calc

Timber Design to AS 1720.3

Questions?

1. Is th

to u

- 2. Why
- 3. How
- 4. How
- 5. Why diff€
- 6. LVL
- 7. Can
- 8. How

TABLE 1: WESBEAM LVL - CONSTRUCTION REQUIREMENTS FOR BUSHFIRE

APPENDIX E

FURTHER DESIGN METHODS FOR MEMBERS

(Normative)

E1 SCOPE

This Appendix extends the design methods given in Section 3, and covers the following topics:

- (a) The material constant (ρ) (see Paragraph E2).
- (b) Slenderness coefficients for columns (see Paragraph E3).
- (c) Spaced columns (see Paragraph E4).
- (d) Beam-column bent about both axes (see Paragraph E5).
- (e) Slenderness coefficients for beams (see Paragraph E6).
- (f) Buckling restraints (see Paragraph E7).
- g) Concentrated loads and partial area loads on grid systems (see Paragraph E8).
- (h) Notched beams (see Paragraph E9).
- Notched columns (see Paragraph E10).
- (j) Notched tension members (see Paragraph E11).
- (k) Single-tapered straight beams (see Paragraph E12).
- (1) Double-tapered, curved and pitched-cambered beams (see Paragraph E13).

eylike

Questions?

Tom.Rickerby@wesbeam.com

THANK YOU!

We will send you a recording of the webinar by email.

- There will be a survey at the end of this webinar, we would appreciate your feedback on how we can improve.
- If you have further questions, send an email to help@clearcalcs.com or use the Help button in ClearCalcs

Stay tuned for another webinar next month!