

Connor Conzelman <u>connor.conzelman@clearcalcs.com</u>

Laurent Gérin laurent.gerin@clearcalcs.com

				~ _				IcearCalcs	
Size	e and Grade								×
Q	Type to filter			-		-	-		
	B10 audit log								×
	Today								
1	СС	Connor Jul 24, 2023	Conzelma 3, 12:51:06 P	n updated	B10				
l	СС	Connor Jul 24, 2023	Conzelma 3, 12:49:42 P	n created E	310				
l								Close	
	1-3/4x24 Microllam	LVL 2.0E-2600Fb	1.75	24	Microllam LVL	2.0E-2600Fb	30% 17	7% 35% 20% 22%	35%

Meet the Presenters

- Connor Conzelman Dir. of Customer Success
 - Here to make sure you're successful in ClearCalcs!

- Laurent Gérin, P.Eng. N.A. Engineering Content Lead
 - Leading our calculator work in the US and in Canada

OB ClearCalcs

How to Ask Questions

- Type your questions in the Chat tab on your Zoom control panel and click Send
 - You can send your questions to everyone or directly to Connor
 - We will address all questions in the second half of the webinar during the 30-minute Q&A session
 - We might invite you to unmute yourself to ask your question live!

Meeting Chat

What we'll be discussing today

- Who snow loads matter and how they're calculated
- Parameters that affect snow loads
- Other considerations with snow loads
- ASCE 7-16 and ASCE 7-22
- Design example in ClearCalcs

Why Snow Loads Matter

- Knickerbocker Theater (1922)
 - One of the deadliest structural collapse in US history, killing 98 people
- Huge amount of roof failures every year due to snow
 - Winter of 2011 in the Northeast: almost 400 collapses
 - Metrodome in Minneapolis: 4 roof collapses due to snow!

ASCE 7 – Your Friendly Snow Code

- Essentially all building codes in the US refer to ASCE 7 for calculating snow loads
- You'll find formulae and design values here
 - Local jurisdiction might still override this!
- Most states have adopted ASCE 7-16 per IBC 2018 and 2021
 - IBC 2024 will adopt ASCE 7-22

ClearCalcs

Ground Snow Load

- Main parameter for snow loads
- Snow depth is measured at almost 10,000 locations in the US
- Snow depth AND load is measured directly at 204 locations
 - This is then correlated to snow depth with the 10,000 locations
- From this, a map is created with snow loads through most of the US

ClearCalcs

Image: Sector Secto

Site-Specific Ground Snow Load

- Some areas require site-specific studies
 - Great Lakes
 - Mountainous / high elevation areas
- A few western states also have their own snow load values
- Generally, check with your local authorities

15.24.040 - Snow loads/snow design—California Building Code.

A. The town shall be considered a snow area. All structures within the town shall be designed to withstand snow loads and any additional effects created by snow.

- B. Basic ground snow load (Pg) is established as follows:
 - . One hundred pounds per square foot for Mammoth Lakes Airport;
 - 2. Two hundred thirty pounds for elevations eight thousand five hundred feet or less;
 - 3. Three hundred pounds for elevations greater than eight thousand five hundred feet.

Other Environmental Parameters

- Surface roughness
 - Based on the same parameters as for wind loads – accounts for shielding provided by the area around the building
- Roof exposure
 - Accounts for the exposure of the roof in its immediate surrounding
 - Eg: is the roof higher than the trees surrounding it?
- These two parameters get combined into the exposure factor C_e

Building Thermal Condition

- Thermal condition
 - If a roof is warmer than freezing, it'll melt snow and reduce the snow load
 - For very cold roofs, snow might melt slower than on the ground
 - This is accounted for by factor C_t – varies from 0.85 for warm greenhouses to 1.3 for freezer buildings

Roof Slope & Slipperiness

- Steep roofs shed off snow due to gravity
- What pitch is required to achieve shedding depends on:
 - Thermal conditions
 - "Slipperiness"
 - Obstructions
- Slippery roofs include metal roofs, glass.
 - Asphalt shingles are NOT slippery
- Roofs need to be steep for this to matter
 - Starts at ~10:12 for asphalt shingles over a ventilated attic

ClearCalcs

Unbalanced Loads

- Account for snow drifts at the roof ridge, and the sun shining on one side at a time
- Not required for slopes less than ½:12 or greater than 7:12
- For gable roofs, two possibilities
 - Rafter system with span < 20' is simpler
 - General method otherwise requires calculating drift height

Snow Drifts

- Snow accumulates against obstructionsby wind (steps in the roof, paparets, rooftop units, etc)
- Can dramatically increase loads on just a few members
- 75% of snow roof failures involve some snow drifts (StructureMag)

$$\frac{h_d}{\sqrt{I_s}} = \left(0.43\sqrt[3]{I_u}\sqrt[4]{p_s+10}\right) - 1.5$$

FIGURE 7.7-2 Configuration of Snowdrifts on Lower Roofs

https://mapescanopies.com/snow-drifts/

Upcoming Changes in ASCE 7-22

- New ground snow load map
 - Essentially no areas require Site Specific Case Studies
 - Loads now directly based on reliability targets, similar to wind & seismic
 (LRFD factor = 1.0, ASD factor = 0.7)
 ^{1a. D}
 ^{2a. D + L}
 ^{3a. D +}
 - Average increase of 12% in snow loads

- TBD: Will local jurisdictions adopt ASCE 7-22 values or continue specifying local values
- New Winter Winds (W2) parameter
 - Adjusts snow drift loads for typical local winds in the winter
 - In the Midwest & Northeast: increased loads (~ 25%)
 - West of the Rockies and in the Southeast : decreased loads (~ 40%)

Snow Loads in ClearCalcs

- ClearCalcs has a snow load calculator based on ASCE 7-16
- We take care of the calculations you just provide the inputs!
- Still in Beta: we want your feedback!

Summary	
Flat Roof Snow Load	$p_f=~18.9~{ m psf}$
Sloped Roof (Balanced) Snow Load	$p_s=~18.9~{ m psf}$

Worked Example 1

- House in Mammoth Lakes CA
- Ground snow load:
 - From local data
- Building parameters
 - Ventilated attic
 - Asphalt shingle roof
 - Rafter system 15 ft span
- Steps:
 - Find the roof snow load
 - Design rafter for the snow load

Conclusion

- Snow loads are critical for structural designs in most of the US, and are the source of many collapses
- There are a variety of parameters for snow loads that require some engineering judgement
- ClearCalcs can help you accelerate your design process with our snow load calculator - and we want your feedback how we can make it better!

What's new in ClearCalcs

- Restrained (basement) retaining walls
- Multi-story shear walls

Webinars coming up

- Diaphragm Analysis and Lateral Load Linking for Shear Wall Design
 - September 27 at 1 PM (ET)
- Introduction to the Girder-Slab® System and Design Tool V3.4
 - October 11 at 1 PM (ET)
- Open Web Steel Joists Analysis and Design
 - October 25 at 1 PM (ET)
- Sign up at https://clearcalcs.com/webinars !

THANK YOU!

- We will send you a recording of the webinar by email.
- There will be a survey at the end of this webinar, we would appreciate your feedback on how we can improve.
- Filling out the survey is also how we know to send you a PDH certificate!
- If you have further questions, send an email to <u>help@clearcalcs.com</u> or use the Help button in ClearCalcs

Questions?

