

AS/NZS 1170.2:2021

Wind Assessment for Residential Projects

Brooks H. Smith, CPEng, P.E. brooks.smith@clearcalcs.com

About ClearCalcs.com

ClearCalcs helps engineers design without compromise by bringing together powerful FEA analysis with easy to use design tools for concrete, steel, cold-formed steel and timber.

Explore our range at <u>clearcalcs.com</u>

Intro Video Hyperlink

More Accurate

Design more accurately with unrestricted and accessible FEA analysis

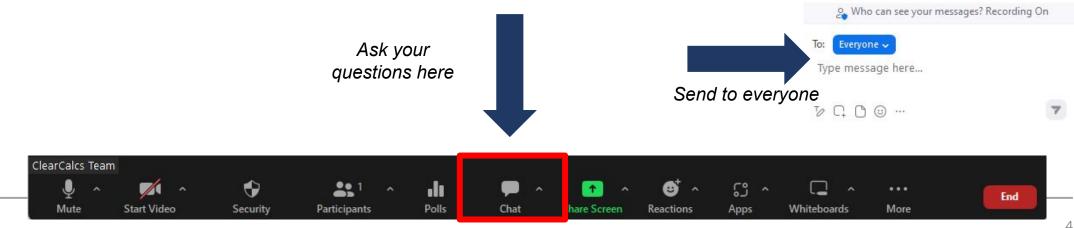
Eliminates Wasted Time Eliminate time wasted using clunky methods or waiting for software licenses to free up

Available Everywhere Empower engineers to work effectively from office, home, or site

Meet the Presenter

- Brooks H. Smith | Head of Engineering R&D
 - Chartered Professional Engineer (AU) & P.E. (USA)
 - MCivE from University of Massachusetts
 - BEng from Dartmouth College
 - 8 years of previous experience in:
 - Structural engineering R&D consulting, specialising in cold-formed steel
 - Research fellowship in system behaviour of thin-walled steel
 - Forensic structural engineering, specialising in reinforced and PT concrete
 - Almost 5 years now with ClearCalcs
 - Focusing on R&D and QA

ClearCalcs



How to Ask Questions

Meeting Chat

Type your questions in the Chat tab on your **Zoom control panel and click Send**

- Please send your questions to "everyone"
- We will address all questions in the second half of the webinar during the 15-minute Q&A session
- We might invite you to unmute yourself to ask your question live!

Agenda – Today's Goals

• Overview of AS/NZS 1170.2:2021

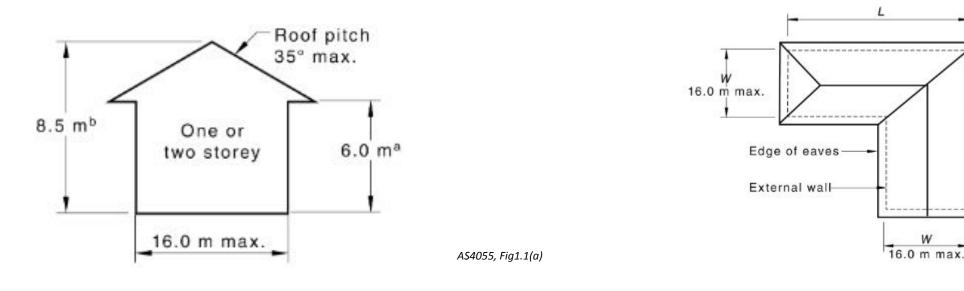
- AS 4055 vs AS/NZS 1170.2
- Changes in new revision

• Determining Wind Loads

- Calculation Strategy
- Wind Speed
- Internal Pressures
- External Pressures
- Final Wind Load

Worked Examples

• Using ClearCalcs


Overview of AS/NZS 1170.2:2021

Comparing with AS 4055, and changes in new revision

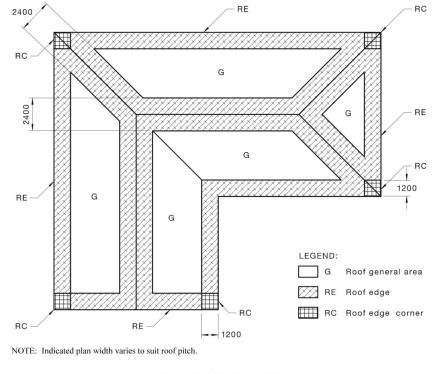
AS 4055 – Geometry Restrictions

- Both will give you valid wind loads for a house
- AS 4055 is intended only for residential houses:
 - Class 1 & 10 structures, with geometry restrictions
- AS 1170.2 is intended for most onshore structures:
 - \leq 200m high, \leq 100m free spans

AS 4055 - Simplifying Assumptions

- Many simplifying assumptions (generally conservative) are taken in AS 4055:
 - Discrete classes (N1-N6, C1-C4) combine multiple factors
 - Applying worst-case wind in all directions
 - Fewer pressure zones on buildings
 - Assumes average roof height of 6.5m
 - 5% added conservativism
- Results in a simple table lookup:

							Topogra	phic class	sification	í.		
Wind	тс	TO	то	то	T1	T1	T1	T2	T2	T2	T3	I
egion		FS	PS	NS	FS	PS	NS	FS	PS	NS	PS	1
	3	N1	N1	N1	N1	N2	N2	N2	N2	N2	N3	1
	2.5	N1	N1	N2	N1	N2	N2	N2	N3	N3	N3	İ
A	2	N1	N2	N2	N2	N2	N3	N2	N3	N3	N3	İ
	1	N2	N2	N3	N2	N3	N3	N3	N3	N3	N4	İ
	3	N2	N2	N3	N2	N3	N3	N3	N3	N4	N4	İ
	2.5	N2	N3	N3	N3	N3	N3	N3	N4	N4	N4	1
В	2	N2	N3	N3	N3	N3	N4	N3	N4	N4	N4	t


Table 2.2 Site wind classification from wind region and site conditions

AS 4055 - Coefficients & Factors

- In AS 4055:
 - Many fewer pressure zones (only 3)
 - $K_c C_{p,n}$ (net pressure coefficient) looked up in one of a few tables
- AS/NZS 1170.2:
 - Numerous pressure zones
 - Several factors independently determined and combined:

 - Separate interior and exterior C_{p,i} and C_{p,e}
 Several K factors relevant for different types of elements within a building

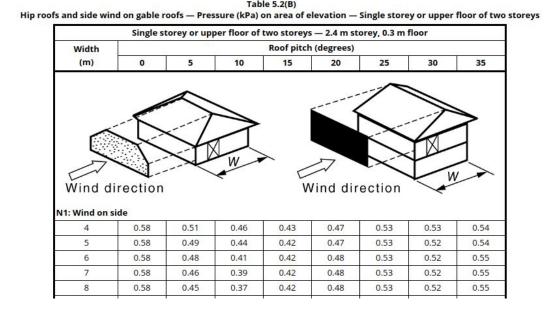
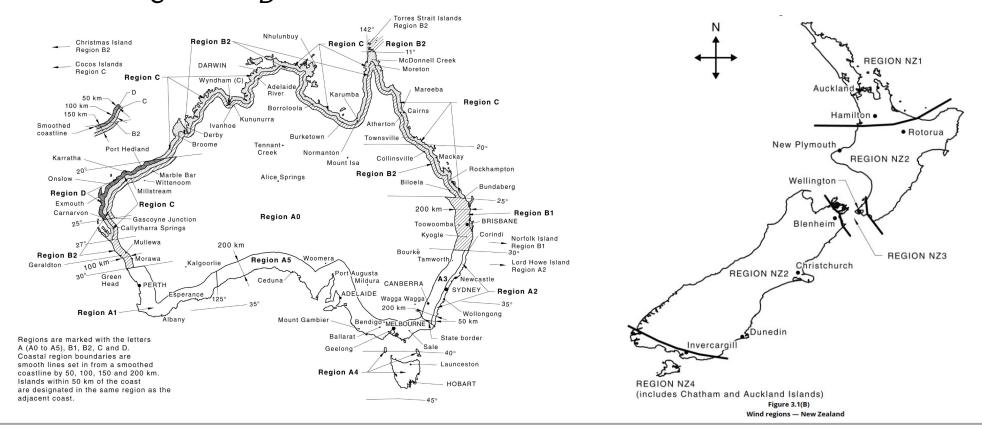
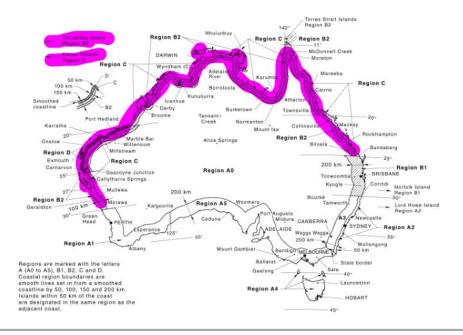

DIMENSIONS IN MILLIMETRES

FIGURE 3.1 PRESSURE ZONES ON HOUSING—ROOFS (PLAN VIEW)


AS 4055 - Total Uplift / Racking

- AS 4055: Completely independent section, with its own independent table lookups
 - Numerous conservative simplifications
 - e.g. 2.7m stories, worst-case geometry ratios
- AS/NZS 1170.2: Sum of all external pressures calculated
 - Though there are a lot of them...

ClearCalcs \bigcirc Clear


- Wind region map updated; new regions A0, B1, B2, & NZ1-4
- Special F_C and F_D factors for Regions C & D removed

Changes 2011 \rightarrow 2021: Multipliers

- New Climate Change Multiplier $M_{c} = 1.0 \text{ or } 1.05$
 - 5% wind speed increase for coastal north
- Shielding Multiplier $M_s = 1.0$ always if building h > 25 m
- Hill Multiplier $M_h = 1.0$ always if hill H < 10 m

OB ClearCalcs

Changes 2011 \rightarrow 2021 - TCs & Factors

- All intermediate terrain categories except TC 2.5 removed
 - TC 2.5 is essentially for outer suburbs
- Internal wind factors with large openings:
 - New open area / volume factor K_v for open structures
 - Internal wind pressure coefficients now include K_a and K_i factors

		Terr	Terrain/height multiplier (<i>M</i> _{z,cat})						
Height (z)	Terrain	Terrain	Terrain	Terrain	Terrain				
(m)	Category 1	Category 2	Category 2.5	Category 3	Category 4				
≤3	0.97	0.91	0.87	0.83	0.75				
5	1.01	0.91	0.87	0.83	0.75				
10	1.08	1.00	0.92	0.83	0.75				
15	1.12	1.05	0.97	0.89	0.75				
20	<mark>1.14</mark>	1.08	1.01	0.94	0.75				
30	1 18	1 1 2	1 06	1 00	0.80				

Table 4.1 Terrain/height multipliers for gust wind speeds in fully developed terrains —

 	-		

Internal pressure coefficients (Cn1) for buildings with openings greater than 0.5 % of the area of the corresponding wall or root

Ratio of area of openings on one surface to the sum of the total open area (including permeability) of other wall and roof surfaces	Largest opening on windward wall	Largest opening on leeward wall	Largest opening on side wall	Largest opening on roof
0.5 or less	-0.3, 0.0	-0.3, <mark>0</mark> .0	-0.3, 0.0	-0.3, 0.0
1	-0.1, 0.2	-0.3, 0.0	-0.3, 0.0	-0.3, 0.0
2	0.7 KaKeCp,e	K _a K _t C _{p,e}	KaKECpe	Ka Kt Cpe
3	0.85 KaKtCp,e	K _a K _t C _{p,e}	K _a K _ℓ C _{p,e}	Ka Ke Cpe
6 or more	Ka Ke Cp.e	K _a K _t C _{p,e}	K _a K _ℓ C _{p,e}	Ka Ke Cpe
	t5-1(b)-1			

Determining Wind Loads

The steps for performing an 1170.2 calculation

Calc Strategy – Calculation Heights

- Most calculations based upon *h* = average roof height
 - Especially for residential buildings (1-2 storey)
- In large structures, might calc loads at every floor z individually

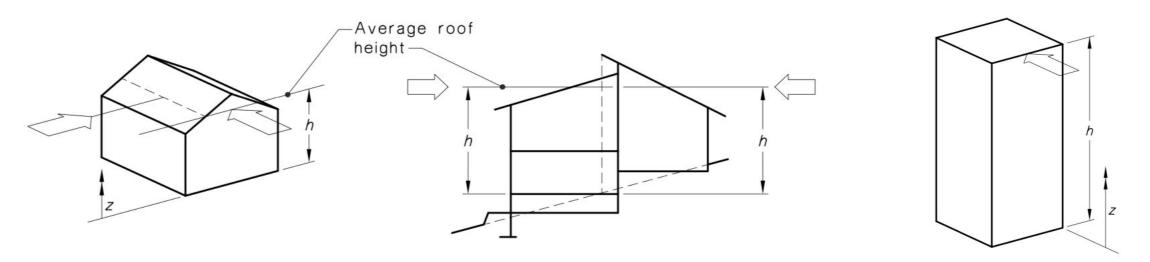


FIGURE 2.1 REFERENCE HEIGHT OF STRUCTURES

(6) ClearCalcs

Calc Strategy - Directions

- Site wind speed at 8 cardinal directions
 - N = 0°, NE = 45°, ...
- Design wind speed at 4 building directions
 - Front = 0°, Right = 90°, ...
- Some calcs are easier if "front" is taken as:
 - **Hip roofs:** perpendicular to a long side of building
 - Gable/monoslope roofs: perpendicular to ridge

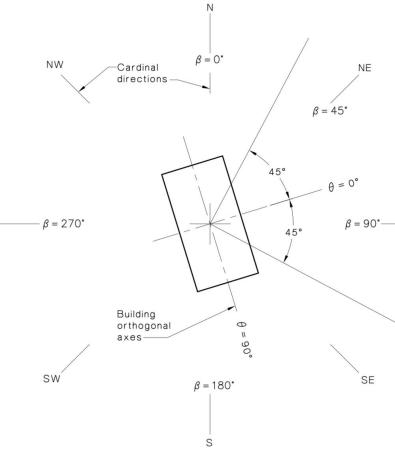


FIGURE 2.2 RELATIONSHIP OF WIND DIRECTIONS AND BUILDING ORTH AXES

Calc Strategy – Overall

- There are two equations that really govern this process:
 - (1) Site Wind Speed
 - The directional wind speed, including topographic and geographic

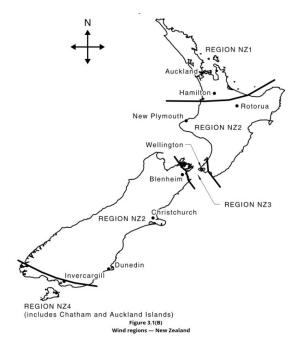
 $V_{\rm sit,\beta} = V_{\rm R} M_{\rm d} (M_{\rm z,cat} M_{\rm s} M_{\rm t}) \qquad \dots 2.2$

- Converted into a "design wind speed" $V_{des,\theta}$, based on orientation
- (2) Design Wind Pressure
 - The actual pressure to be applied to the structure
 - $p = \left(0.5
 ho_{\mathrm{air}}
 ight) \left[V_{\mathrm{des}, heta}
 ight]^2 C_{\mathrm{shp}} C_{\mathrm{dyn}}$

2.4(1)

 $C_{
m shp} = C_{
m p,i} K_{
m c,i} K_{
m v}$, for internal pressures 5.2(1) $C_{
m shp} = C_{
m p,e} K_{
m a} K_{
m c,e} K_{\ell} K_{
m p}$, for external pressures 5.2(2)

 $C_{
m shp} = C_{
m f} K_{
m a} K_{
m c,e}$, for frictional drag forces 5.2(3)


• Top of each slide will highlight the factor being considered

 $V_{sit,\beta} = V_{R}M_{d}(M_{z,cat}M_{s}M_{t}) \rightarrow V_{des,\theta}$

ⓓ ClearCalcs

Wind Speed - Regions

- Select your wind region based upon location:
 - Note that regions "A",
 "B", "NZ" are subdivided

$V_{sit,\beta} = V_R M_d (M_{z,cat} M_s M_t) \to V_{des,\theta}$

Wind Speed – Regional Wind Speed

- Look up equation for non-directional base wind speed V_{R}
 - Which is based upon probability of exceedance = 1/R
 - See NCC 2022, CI B1D3(c); Houses: R_{ult} = 500 year, R_{serv} = 25 years
- And then direction multipliers for 8 cardinal directions

Regional wind		Re	gion		
speed	Non-c	yclonic	Cycl	lonic	
(m/s)	A (0 to 5)	B1, B2	C (maximum)	D (maximum)	
V ₁	30	26	23	23	
$V_{\rm R}$ ($R \ge 5$ years)	67-41 <i>R</i> ^{-0.1}	106-92 <i>R</i> ^{-0.1}	122-104 <i>R</i> ^{-0.1}	156-142 <i>R</i> ^{-0.1}	
÷.					
				Ļ	

Table 3.1(A)

						and the second se			
	dinal ctions	Region A0	Region A1	Region A2	Region A3	Region A4	Region A5	Region B1	Regions B2, C, D
)	N	0.90	0.90	0.85	0.90	0.85	0.95	0.75	0.90
	NE	0.85	0.85	0.75	0.75	0.75	0.80	0.75	0.90
_	E	0.85	0.85	0.85	0.75	0.75	0.80	0.85	0.90
	SE	0.90	0.80	0.95	0.90	0.80	0.80	0.90	0.90
	S	0.90	0.80	0.95	0.90	0.80	0.80	0.95	0.90
	SW	0.95	0.95	0.95	0.95	0.90	0.95	0.95	0.90
	W	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.90
	NW	0.95	0.95	0.95	0.95	1.00	0.95	0.90	0.90

Table 3.2(A)

Wind direction multiplier (M_d) — Australia

 $V_{sit.\beta} = V_R M_d (M_{z.cat} M_s M_t) \to V_{des,\theta}$

Wind Speed - Terrain / Height Multiplier

- Terrain category in each direction buildings & vegetation
 - TC1 = Very exposed open terrain (e.g. deserts and lakes)
 - TC2 = Open terrain with scattered obstructions (e.g. farmland)
 - TC2.5 = Isolated trees or obstructions (e.g. outer suburbs)
 - TC3 = Numerous closely-spaced obstructions (e.g. inner suburbs)
 - TC4 = Numerous large obstructions (e.g. CBDs)
 - May be averaged if it varies outward

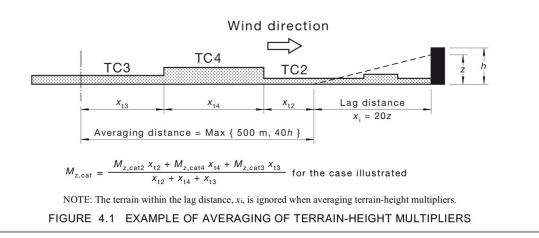


Table 4.1 Terrain/height multipliers for gust wind speeds in fully developed terrains — All regions except A0

		Terr	rain/height r	multiplier (<i>M</i> z	(,cat)	
Height (z)	Terrain	Terrain	Terrain	Terrain	Terrain	
(m)	Category 1	Category 2	Category 2.5	Category 3	Category 4	
≤3	0.97	0.91	0.87	0.83	0.75	
5	1.01	0.91	0.87	0.83	0.75	
10	1.08	1.00	0.92	0.83	0.75	
15	1.12	1.05	0.97	0.89	0.75	
20	<mark>1.14</mark>	1.08	1.01	0.94	0.75	
30	1 18	1 1 2	1.06	1 00	0.80	

...4.3(1)

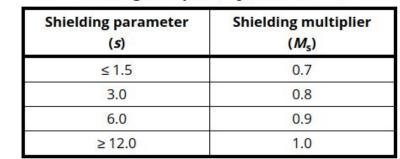
Wind Speed – Shielding Multiplier

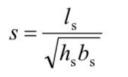
- Definition of shielding structure very important:
 - Only buildings, within a distance of 20^*h , with height $h_{s} \ge z$

 $V_{sit.\beta} = V_R M_d (M_{z.cat} M_s M_t) \to V_{des,\theta}$

- Determined independently for each 45° arc from structure
- Shielding "parameter":

• Warning: "average spacing" I_s doesn't exactly mean the ... average spacing:


$$l_{\rm s} = h\left(\frac{10}{n_{\rm s}}+5\right)$$


Table 4.2 Shielding multiplier (M_s) (for $h \le 25$ m)

6 ClearCalcs

NOTE	For intermediate values of <i>s</i> , use linear interpolation.

... 4.3(2)

 $V_{sit.\beta} = V_R M_d (M_{z,cat} M_s M_t) \to V_{des,\theta}$

Wind Speed – Topographic Multiplier

Hills M_h: Consider features within min(500m, 20*h) distance,
 > 10 metres in height

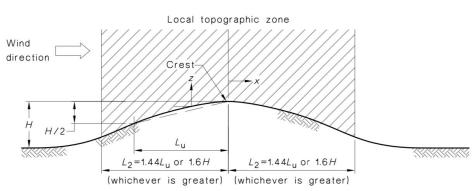
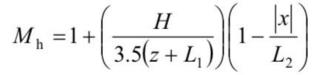
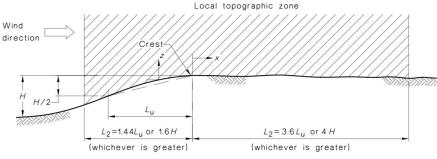
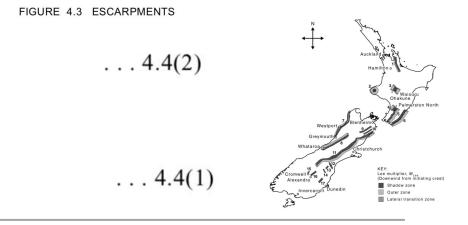




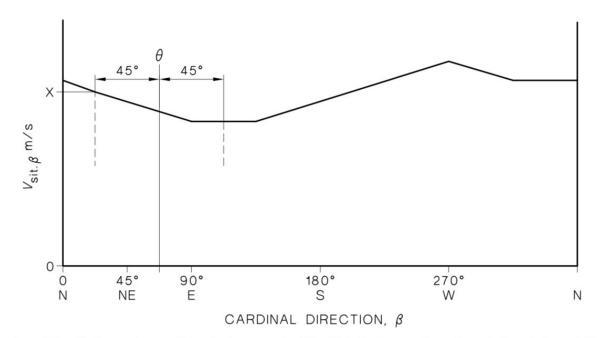
FIGURE 4.2 HILLS AND RIDGES



• Lee effect M_{lee}: Only for New Zealand

 $M_{\rm t} = M_{\rm h} M_{\rm lee} (1 + 0.00015 E)$

NOTE: For escarpments, the average downwind slope, measured from the crest to a distance of the greater of 3.6 L_u or 4 H shall not exceed 0.05.



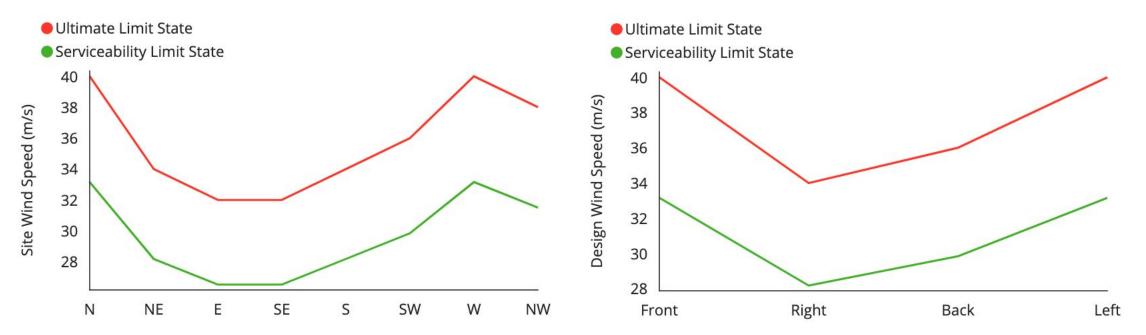
 $V_{sit,\beta} = V_R M_d (M_{z,cat} M_s M_t) \rightarrow V_{des,\theta}$

ClearCalcs

Wind Speed - Design Wind Speed

- 8 site wind speeds \rightarrow 4 design wind speeds
- $V_{des,\theta} = V_{sit,\beta = \theta \pm 45^{\circ}}$
 - In words: design wind speed is the maximum site wind speed within ±45° of the direction of a face of the building

The value of $V_{\text{des},\theta}$ is the maximum of $V_{\text{sit},\beta}$ in the range $\theta \pm 45^{\circ}$, which, in the case shown here, is the wind speed X.


FIGURE 2.3 EXAMPLE OF $V_{sit,\beta}$ CONVERSION TO $V_{des,\theta}$

 $V_{sit.\beta} = V_R M_d (M_{z,cat} M_s M_t) \rightarrow V_{des,\theta}$

Wind Speed – Design Wind Speed

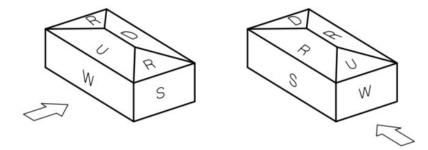
- Remember, repeat in 8 cardinal directions \rightarrow 4 building directions!
 - And for both ultimate & service limit states!

$p_i = (0.5\rho_{air})[V_{des,\theta}]^2 \cdot \{C_{fig,i} = C_{p,i}K_{c,i}\} \cdot C_{dyn}$ **Internal Pressures – Permeable Structure**

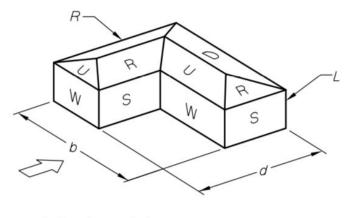
- "Opening" defined in great detail in Cl 5.3.2
 - But generally includes anything that can be opened, such as doors, windows, ventilators, etc unless specially-designed for resistance
- Vital parameter = first column
 - Includes your roof! (skylights)
 - Essentially, measuring how balanced your openings are between surfaces
 - For example, if you have $1m^2$ of openings on three walls, but $3m^2$ of openings on one wall, then this maximum ratio would be equal to 1.0
 - because $3m^2 / (1m^2 + 1m^2 + 1m^2) = 1.0$

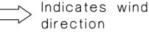
Ratio of area of openings on one surface to the sum of the total open area (including permeability) of other wall and roof surfaces	Largest opening on windward wall	Largest opening on leeward wall	Largest opening on side wall	Largest opening on roof
0.5 or less	-0.3, 0.0	-0.3, 0.0	-0.3, 0.0	-0.3, 0.0
1	-0.1, 0.2	-0.3, 0.0	-0.3, 0.0	- <mark>0.3, 0.</mark> 0
2	0.7 KaKeCp,e	K _a K _ℓ C _{p,e}	K _a K _ℓ C _{p,e}	K _a K _ℓ C _{p,e}
3	0.85 K _a K _ℓ C _{p,e}	K _a K _ℓ C _{p,e}	K _a KℓC _{p,e}	K _a K _e C _{p,e}
6 or more	K _a K _ℓ C _{p,e}	K _a K _ℓ C _{p,e}	K _a K _ℓ C _{p,e}	K _a K _e C _{p,e}
	t5-1(b)-1	\Rightarrow	\Rightarrow	

Internal pressure coefficients ($C_{p,i}$) for buildings with openings greater than 0.5 % of the area of the corresponding wall or roof


NOTE 1 $C_{p,e}$ is the relevant external pressure coefficient at the location of the largest opening. For example, in Column 2, $C_{p,e}$ means the windward wall pressure coefficient obtained from *Table 5.2(A)*; in Column 3, $C_{p,e}$ means the leeward wall pressure coefficient obtained from *Table 5.2(B)*, in Column 5, $C_{p,e}$ means the roof pressure coefficient for that part of the roof containing the opening.

$$p_e = (0.5\rho_{air}) \left[V_{des,\theta} \right]^2 \cdot \left\{ C_{fig,e} = C_{p,e} K_a K_{c,e} K_l K_p \right\} \cdot C_{dyn}$$


ClearCalcs


External Pressures

	Facing Wind	Away from Wind	Sides
Walls:	<u>W</u> indward	<u>L</u> eeward	<u>S</u> ide
Roofs:	<u>U</u> pwind	<u>D</u> ownwind	C <u>R</u> osswind

- Note: "wall" pressure is also applied to underside of adjacent eaves
 - "roof" loads only mean top of roof



FIGURE 5.2 PARAMETERS FOR RECTANGULAR ENCLOSED BUILDINGS

External Pressures - Table Lookups

- Separate lookup tables for each direction
 - Often with two values given (min and max)
- Warnings:
 - Several lookups depend upon a *d/b* or *d/h* ratio but which dimension is *d* or *b* changed based on the wind direction you're looking at!

 $p_e = (0.5\rho_{air}) \left[V_{des,\theta} \right]^2 \cdot \left\{ C_{fig,e} = C_{p,e} K_a K_{c,e} K_l K_p \right\} \cdot C_{dvn}$

- *d* is parallel to wind direction, *b* is perpendicular
- Wall "side" and roof "crosswind" directions have multiple pressure zones
 - Depending on distance to the windward edge

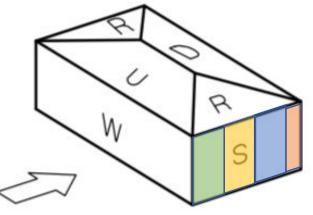


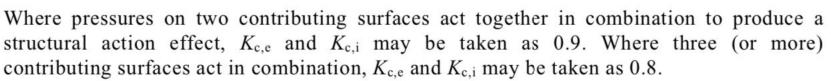
FIGURE 5.2 PARAMETERS FOR RECTANGULAR ENCLOSED BUILDINGS

Final Wind Loads – Constants

- Up to now, calculations only had to be done once per building
 - But most *K* factors depend on the *specific element* for which load is calculated

$$V_{sit,\beta} = V_R M_d (M_{z,cat} M_s M_t) \rightarrow V_{des,\theta}$$

$$p_i = (0.5 \ \rho_{air}) [V_{des,\theta}]^2 \{C_{shp} = C_{p,i} \ K_{c,i} \ K_v \} C_{dyn}$$


$$p_e = (0.5 \ \rho_{air}) [V_{des,\theta}]^2 \{C_{shp} = C_{p,e} \ K_a \ K_{c,e} \ K_l \ K_p \} C_{dyn}$$

$$p_f = (0.5 \ \rho_{air}) [V_{des,\theta}]^2 \{C_{shp} = C_f \ K_a \ K_{c,e} \} C_{dyn}$$

- $K_v = \text{open area} / \underline{v} \text{olume factor (which is new)}$
- K_a = tributary <u>a</u>rea factor
- $K_{I} = \underline{I}$ ocal cladding factor
- $K'_p = \mathbf{p}$ ermeable cladding factor

$p_{e} = (0.5\rho_{air})[V_{des,\theta}]^{2} \cdot \{C_{fig,e} = C_{p,e}K_{a}K_{c,e}K_{l}K_{p}\} \cdot C_{dyn}$ $p_{i} = (0.5\rho_{air})[V_{des,\theta}]^{2} \cdot \{C_{fig,i} = C_{p,i}K_{c,i}\} \cdot C_{dyn}$ **Final Wind Loads – Combination Factors**

- Wind loads calculated are worst-case, and it's not always reasonably possible for worst to occur on every surface at once
 - So, for designing a system, such as a portal frame, affected by multiple surfaces, combination factors can be used to reduce loads
 - Table 5.5 has many examples, but this is the governing clause:

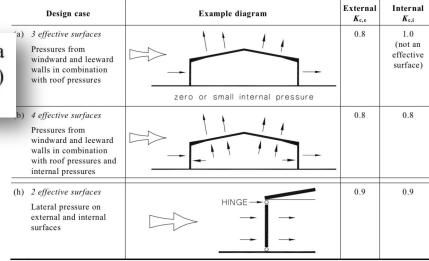


 TABLE
 5.5

 EXAMPLES OF ACTION COMBINATION FACTORS $K_{c,e}$ AND $K_{c,i}$ FOR ACTION EFFECTS ON STRUCTURAL ELEMENTS FROM WIND PRESSURE ON

EFFECTIVE SURFACES

Final Wind Loads – Wind Directions

• Rearranging formulas:

$$p_{i} = [(0.5 \rho_{air}) [V_{des,\theta}]^{2} C_{p,i} C_{dyn}] * K_{c,i} K_{v}$$

$$p_{e} = [(0.5 \rho_{air}) [V_{des,\theta}]^{2} C_{p,e} C_{dyn}] * K_{a} K_{c,e} K_{l} K_{p}$$

$$p_{f} = [(0.5 \rho_{air}) [V_{des,\theta}]^{2} C_{f} C_{dyn}] * K_{a} K_{c,e}$$

- 4 wind directions / 4 sides, 2 pressure coefficients per side
 - Take worst-case of all four wind directions
 - So 8 values of p_i and 16 values of p_e (8 for walls + 8 for roof)

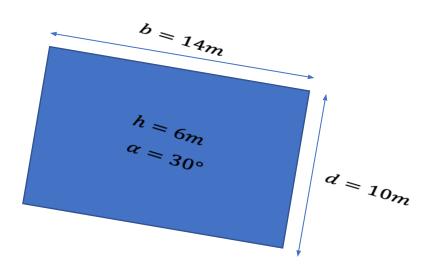
Design External Pr	essures on	Roof p_e	roof,table	=1					Design External Wind Pressures on	$p_{e,roof} =$	
	Front Pressure	Front Pressure	Right Pressure	Right Pressure	Back Pressure	Back Pressure	Left Pressure	Left Pressure	Each Side of the Roof	Pe,rooj —	
Windward Wall	#1 $p_{e,rF,1}$ (kPa)	#2 p _{e,rF,2} (kPa)	#1 p _{e,rR,1} (kPa)	#2 p _{e,rR,2} (kPa)	#1 p _{e,rB,1} (kPa)	#2 p _{e,rB,2} (kPa)	#1 p _{e,rL,1} (kPa)	#2 $p_{e,\tau L,2}$ (kPa)	Side of Roof	Minimum External Pressure $p_{e,min}$ (kPa)	Maximum External Pressur $p_{e,max}$ (kPa)
Front	-0.577	-0.144	-1.25	-0.577	-0.577	-0.577	-1.25	-0.577	Front	-0.942	-0.144
Right	-0.681	-0.306	-0.278	0.0347	-0.681	-0.306	-0.417	-0.417	Right	-1.25	0.0347
Back	-0.467	-0.467	-1.01	-0.467	-0.467	-0.117	-1.01	-0.467	Back	-0.942	-0.117
Left	-0.942	-0.423	-0.577	-0.577	-0.942	-0.423	-0.385	0.0481	Left	-1.25	0.0481

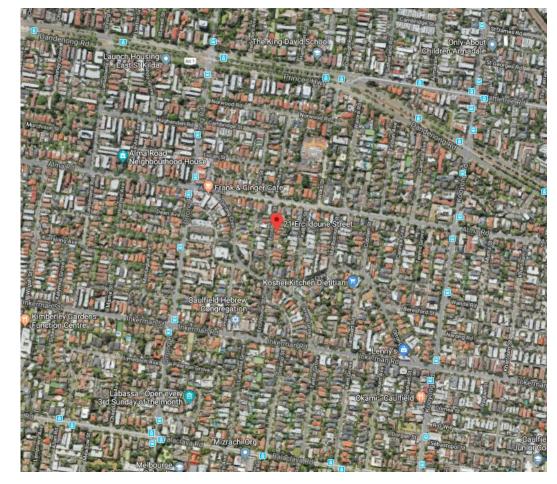
Final Wind Loads - W_u and W_s

• Can now finally calculate your final W_u and W_s wind loads

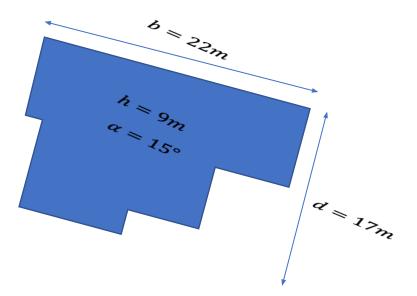
 $F = \sum (p_z A_z) \qquad \dots 2.5(1)$

- Multiply pressures by load widths in appropriate load combinations
- Still usually 2 values for W_u and 2 values for W_s for a given member on a given side of the building


$$\begin{split} W_{u1} &= p_{i,min} K_{c,i} A_i + p_{e,max} K_a K_{c,e} K_l K_p A_e \\ W_{u2} &= p_{i,max} K_{c,i} A_i + p_{e,min} K_a K_{c,e} K_l K_p A_e \\ W_{s1} &= p_{i,s,min} K_{c,i} A_i + p_{e,s,max} K_a K_{c,e} K_l K_p A_e \\ W_{s2} &= p_{i,s,max} K_{c,i} A_i + p_{e,s,min} K_a K_{c,e} K_l K_p A_e \end{split}$$


Worked Examples

How does the workflow look like in ClearCalcs


Example #1 – Omni-Directional Simple

- 1-story rectangular house
- "Front" oriented 10° (= NNE)
- Openings ratio = 0.5, largest on front
- 21 Ercildoune Street, Caulfield North, VIC 3161
 - Melbourne SE
 - Flat terrain, surrounded by numerous houses

Example #2 – Directional Complex Site

- 2-story polygonal-shaped house
- "Front" oriented 15° (= NNE)
- Openings ratio = 2.0, largest on front
- 63 Ellsworth Drive, Mount Louisa, QLD 4814
 - Townsville
 - Immediately south of Mount Louisa (185m)
 - 2-story houses North, East, South
 - Open terrain to West

Questions?

THANK YOU!

- We will send you a recording of the webinar by email.
- There will be a survey at the end of this webinar, we would appreciate your feedback on how we can improve.
- If you have further questions, send an email to <u>help@clearcalcs.com</u> or use the Help button in ClearCalcs
- Stay tuned for <u>Revolutionising Access To Construction</u> <u>Standards</u> webinar tomorrow!

Appendix

About ClearCalcs

Happy Engineers Using ClearCalcs

ClearCalcs has been used in 2,000,000+ designs by a growing number of engineers across the globe, with the US becoming our largest customer base in 2021.

"You are light years ahead of the competition on features and ongoing growth." "Why didn't you just use ClearCalcs for that?"

"The program basically does the work for you...Wow, I can finally throw away the last of my spreadsheets!"

Don C. Foundation Engineering Specialists, LLC

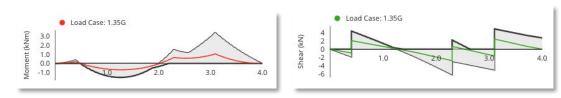
Helen W. via Landon R. Criterium Engineers **Jason M.** J. Michael Engineering, PLLC

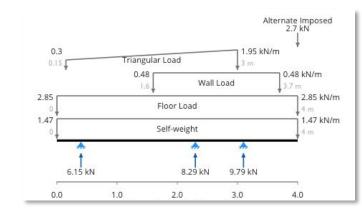
The ClearCalcs Team

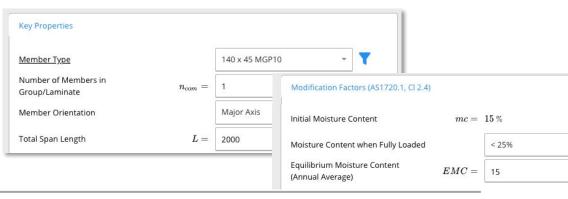
A growing team of passionate engineers, programmers, customer success specialists, product managers, marketers, and more!

What Sets Our Calculations Apart

• Live solutions


• Instantly see how every change you make affects the design, in all load cases


• Finite Element Analysis

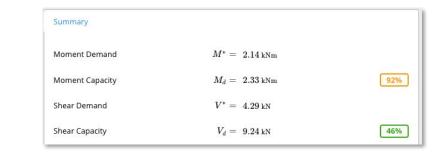

• Get the most accurate results no matter what your configuration

• As simple or complex as you want

• Safely enter in only a few properties, or tune every parameter – it's up to you

What Sets Our Design Process Apart

Member selector


- Check every possible member in seconds
- Link your loads
 - No need to manually copy reactions into the next sheet just create a link

• Simple traffic light indicators

• See at a glance how close your design is to perfection

Designation	M_d V_d δ_l δ_s
70 x 35 F5 Seasoned SW	450% 91% 417% 752%
90 x 35 F5 Seasoned SW	273% 71% 198% 354%
120 x 35 F5 Seasoned SW	154% 53% 84% 150%
140 x 35 F5 Seasoned SW	113% 46% 53% 95%
190 x 35 F5 Seasoned SW	62% 34% 22% 38%

Roof	Lintel RL8	3			÷
Support				s Imposed Load Reactions	
support	(mm)	R* (kN)	R*_G (kN)	R*_Q (kN)	
1	(mm) 0	R* (kN)	0.0667	0.133	

What Sets Our Platform Apart

• Clean, clear printouts

• Beautiful results your clients can understand

See full detail for every field

• References, equations, and more

Rapid product updates

• Receive new features and calculations within days, not years

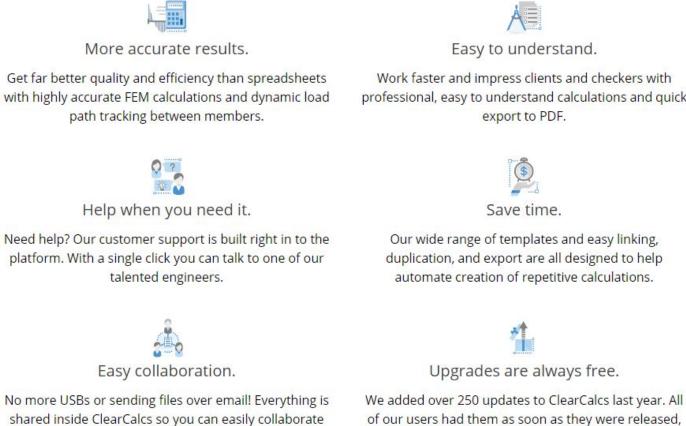
	· · · ·		Client:		Date: Oct 17, 2018
		(The second seco	Engineer: Brooks Smith		Job #:
		00	Project:	test	Subject: 87
		<u> </u>	Project.	test	Subject: B/
				Summary	
		Moment Demand a		$M_x^st=~10.3~{ m kNm}$	
		85% Moment Capacity a	about X-Axis	$\phi M_x = 12.2 \mathrm{kNm}$ ($\phi \cdot M_{ m e}$	~
		Shear Demand		$V*=~20.7~{ m kN}$	
and		18% Shear Capacity		$\phi V_v = 118$ km ϕv ,	
.unu			Shea	r Capacity (AS4100-1998, Section 5.11)	I
		Shear Capacity Fac	· · · · · ·	$\phi = 0.9$	
		Nominal Shear Yiel		$V_w = 131 { m kN}$ 0.4 J	$t_{a} \cdot d_{c} \cdot t_{a} \cdot 10^{-10}$
		Nominal Shear Bud	kling Capacity	$V_b = 131$ kN $min(a, b)$	(V ₀)
		Nominal Shear Cap		n $V_{ m u}=131$ kN v.	
		Stress Distribution Nominal Shear Cap		$V_v = 131$ kN v.	
ckling Stress	$f_{oy}=~112~{ m MPa}$		Mome	nt Section Capacity (AS4100-1998, Cl 5.	3)
				$\phi = 0.9$	
kling Stress	$f_{oz}=~82.2~\mathrm{MPa}$		pacity	$M_s = 32.6 { m kNm}$ $f_{st} = 2.6 { m kNm}$	30'-0
ess for torsional global bucklin, 5, Eqn 3.3.3.2(12) $\Rightarrow \frac{GJ}{(Aro^2)} \cdot \left(1 + \frac{\pi^2 E I_{e}}{(GJ d_{e2}^2)}\right)$	g, used to calculate critical elastic bu	ckling stress.			
			6	ClearCa	lcs
onal Factor	eta=0.556				
		Log Envelope It's now easier	ction acks of new th a bevy of in now and diagram than ever t	w ClearCalcs updates! We f new and imminent updat templates and features.	5, and more! 're excited to kick off 2019 es including new calculation
				0	
		on neams with	r all diadrai	ms undated to a full	

Weak Axis Bu

Torsional Buc

Buckling str

AS4600-200 Conditions: (default) -


Flexural-Torsi

Key Advantages

on projects.

ClearCalcs is designed for the modern efficiency focused engineering practice

Easy to understand.

Work faster and impress clients and checkers with professional, easy to understand calculations and quick export to PDF.

Never lose work again.

ClearCalcs was built in the cloud. That means we automatically save your work as you type and keep it securely backed up on our servers.

Always have access.

Shared licenses and lock-outs are a thing of the past! Our simple pricing model makes it easy to give everyone access to ClearCalcs when they need it.

Mobile. Tablet. Desktop.

ClearCalcs was designed to work on any modern device. Nothing to download or install, all you need is a web browser.

and we didn't charge them a cent extra.